pandera.schemas.DataFrameSchema.update_columns¶
-
DataFrameSchema.
update_columns
(update_dict)[source]¶ Create copy of a
DataFrameSchema
with updated column properties.- Parameters
- Return type
- Returns
a new
DataFrameSchema
with updated columns- Raises
SchemaInitError
: if column not in schema or you try to change the name.- Example
Calling
schema.update_columns
returns theDataFrameSchema
with the updated columns.>>> import pandera as pa >>> >>> example_schema = pa.DataFrameSchema({ ... "category" : pa.Column(pa.String), ... "probability": pa.Column(pa.Float) ... }) >>> >>> print( ... example_schema.update_columns( ... {"category": {"pandas_dtype":pa.Category}} ... ) ... ) <Schema DataFrameSchema( columns={ 'category': <Schema Column(name=category, type=category)> 'probability': <Schema Column(name=probability, type=float)> }, checks=[], coerce=False, pandas_dtype=None, index=None, strict=False name=None, ordered=False )>
Note
This is the successor to the
update_column
method, which will be deprecated.