A Statistical Data Testing Toolkit¶
A data validation library for scientists, engineers, and analysts seeking correctness.
pandera
provides a flexible and expressive API for performing data
validation on dataframes to make data processing pipelines more readable and
robust.
Dataframes contain information that pandera
explicitly validates at runtime.
This is useful in production-critical data pipelines or reproducible research
settings. With pandera
, you can:
Define a schema once and use it to validate different dataframe types including pandas, dask, modin, and pyspark.pandas.
Check the types and properties of columns in a
pd.DataFrame
or values in apd.Series
.Perform more complex statistical validation like hypothesis testing.
Seamlessly integrate with existing data analysis/processing pipelines via function decorators.
Define schema models with the class-based API with pydantic-style syntax and validate dataframes using the typing syntax.
Synthesize data from schema objects for property-based testing with pandas data structures.
Lazily Validate dataframes so that all validation rules are executed before raising an error.
Integrate with a rich ecosystem of python tools like pydantic, fastapi and mypy.
Install¶
Install with pip
:
pip install pandera
Or conda
:
conda install -c conda-forge pandera
Extras¶
Installing additional functionality:
pip install pandera[hypotheses] # hypothesis checks
pip install pandera[io] # yaml/script schema io utilities
pip install pandera[strategies] # data synthesis strategies
pip install pandera[mypy] # enable static type-linting of pandas
pip install pandera[dask] # validate dask dataframes
pip install pandera[pyspark] # validate pyspark dataframes
pip install pandera[modin] # validate modin dataframes
pip install pandera[modin-ray] # validate modin dataframes with ray
pip install pandera[modin-dask] # validate modin dataframes with dask
pip install pandera[geopandas] # validate geopandas geodataframes
conda install -c conda-forge pandera-hypotheses # hypothesis checks
conda install -c conda-forge pandera-io # yaml/script schema io utilities
conda install -c conda-forge pandera-strategies # data synthesis strategies
conda install -c conda-forge pandera-mypy # enable static type-linting of pandas
conda install -c conda-forge pandera-fastapi # fastapi integration
conda install -c conda-forge pandera-dask # validate dask dataframes
conda install -c conda-forge pandera-pyspark # validate pyspark dataframes
conda install -c conda-forge pandera-modin # validate modin dataframes
conda install -c conda-forge pandera-modin-ray # validate modin dataframes with ray
conda install -c conda-forge pandera-modin-dask # validate modin dataframes with dask
Quick Start¶
import pandas as pd
import pandera as pa
# data to validate
df = pd.DataFrame({
"column1": [1, 4, 0, 10, 9],
"column2": [-1.3, -1.4, -2.9, -10.1, -20.4],
"column3": ["value_1", "value_2", "value_3", "value_2", "value_1"],
})
# define schema
schema = pa.DataFrameSchema({
"column1": pa.Column(int, checks=pa.Check.le(10)),
"column2": pa.Column(float, checks=pa.Check.lt(-1.2)),
"column3": pa.Column(str, checks=[
pa.Check.str_startswith("value_"),
# define custom checks as functions that take a series as input and
# outputs a boolean or boolean Series
pa.Check(lambda s: s.str.split("_", expand=True).shape[1] == 2)
]),
})
validated_df = schema(df)
print(validated_df)
column1 column2 column3
0 1 -1.3 value_1
1 4 -1.4 value_2
2 0 -2.9 value_3
3 10 -10.1 value_2
4 9 -20.4 value_1
You can pass the built-in python types that are supported by
pandas, or strings representing the
legal pandas datatypes,
or pandera’s DataType
:
schema = pa.DataFrameSchema({
# built-in python types
"int_column": pa.Column(int),
"float_column": pa.Column(float),
"str_column": pa.Column(str),
# pandas dtype string aliases
"int_column2": pa.Column("int64"),
"float_column2": pa.Column("float64"),
# pandas > 1.0.0 support native "string" type
"str_column2": pa.Column("str"),
# pandera DataType
"int_column3": pa.Column(pa.Int),
"float_column3": pa.Column(pa.Float),
"str_column3": pa.Column(pa.String),
})
For more details on data types, see DataType
Schema Model¶
pandera
also provides an alternative API for expressing schemas inspired
by dataclasses and
pydantic. The equivalent
SchemaModel
for the above
DataFrameSchema
would be:
from pandera.typing import Series
class Schema(pa.SchemaModel):
column1: Series[int] = pa.Field(le=10)
column2: Series[float] = pa.Field(lt=-1.2)
column3: Series[str] = pa.Field(str_startswith="value_")
@pa.check("column3")
def column_3_check(cls, series: Series[str]) -> Series[bool]:
"""Check that column3 values have two elements after being split with '_'"""
return series.str.split("_", expand=True).shape[1] == 2
Schema.validate(df)
Informative Errors¶
If the dataframe does not pass validation checks, pandera
provides
useful error messages. An error
argument can also be supplied to
Check
for custom error messages.
In the case that a validation Check
is violated:
import pandas as pd
from pandera import Column, DataFrameSchema, Int, Check
simple_schema = DataFrameSchema({
"column1": Column(
Int, Check(lambda x: 0 <= x <= 10, element_wise=True,
error="range checker [0, 10]"))
})
# validation rule violated
fail_check_df = pd.DataFrame({
"column1": [-20, 5, 10, 30],
})
simple_schema(fail_check_df)
Traceback (most recent call last):
...
SchemaError: <Schema Column: 'column1' type=<class 'int'>> failed element-wise validator 0:
<Check <lambda>: range checker [0, 10]>
failure cases:
index failure_case
0 0 -20
1 3 30
And in the case of a mis-specified column name:
# column name mis-specified
wrong_column_df = pd.DataFrame({
"foo": ["bar"] * 10,
"baz": [1] * 10
})
simple_schema.validate(wrong_column_df)
Traceback (most recent call last):
...
pandera.SchemaError: column 'column1' not in dataframe
foo baz
0 bar 1
1 bar 1
2 bar 1
3 bar 1
4 bar 1
Contributing¶
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome.
A detailed overview on how to contribute can be found in the contributing guide on GitHub.
Issues¶
Submit issues, feature requests or bugfixes on github.
Need Help?¶
There are many ways of getting help with your questions. You can ask a question on Github Discussions page or reach out to the maintainers and pandera community on Discord
How to Cite¶
If you use pandera
in the context of academic or industry research, please
consider citing the paper and/or software package.
Paper¶
@InProceedings{ niels_bantilan-proc-scipy-2020,
author = { {N}iels {B}antilan },
title = { pandera: {S}tatistical {D}ata {V}alidation of {P}andas {D}ataframes },
booktitle = { {P}roceedings of the 19th {P}ython in {S}cience {C}onference },
pages = { 116 - 124 },
year = { 2020 },
editor = { {M}eghann {A}garwal and {C}hris {C}alloway and {D}illon {N}iederhut and {D}avid {S}hupe },
doi = { 10.25080/Majora-342d178e-010 }
}
Software Package¶
License and Credits¶
pandera
is licensed under the MIT license.
and is written and maintained by Niels Bantilan (niels@pandera.ci)