pandera.schemas.DataFrameSchema.remove_columns#
- DataFrameSchema.remove_columns(cols_to_remove)[source]#
Removes columns from a
DataFrameSchema
and returns a new copy.- Parameters
cols_to_remove (List) – Columns to be removed from the
DataFrameSchema
- Return type
- Returns
a new
DataFrameSchema
without the cols_to_remove- Raises
SchemaInitError
: if column not in schema.- Example
To remove a column or set of columns from a schema, pass a list of columns to be removed:
>>> import pandera as pa >>> >>> example_schema = pa.DataFrameSchema( ... { ... "category" : pa.Column(str), ... "probability": pa.Column(float) ... } ... ) >>> >>> print(example_schema.remove_columns(["category"])) <Schema DataFrameSchema( columns={ 'probability': <Schema Column(name=probability, type=DataType(float64))> }, checks=[], coerce=False, dtype=None, index=None, strict=False name=None, ordered=False, unique_column_names=False )>
See also