pandera.schemas.DataFrameSchema.reset_index#
- DataFrameSchema.reset_index(level=None, drop=False)[source]#
A method for resetting the
Index
of aDataFrameSchema
- Parameters
- Return type
- Returns
a new
DataFrameSchema
with specified column(s) in the index.- Raises
SchemaInitError
if no index set in schema.- Examples
Similar to the
pandas
reset_index method on a pandas DataFrame, this method can be used to to fully or partially reset indices of a schema.To remove the entire index from the schema, just call the reset_index method with default parameters.
>>> import pandera as pa >>> >>> example_schema = pa.DataFrameSchema( ... {"probability" : pa.Column(float)}, ... index = pa.Index(name="unique_id", dtype=int) ... ) >>> >>> print(example_schema.reset_index()) <Schema DataFrameSchema( columns={ 'probability': <Schema Column(name=probability, type=DataType(float64))> 'unique_id': <Schema Column(name=unique_id, type=DataType(int64))> }, checks=[], coerce=False, dtype=None, index=None, strict=False name=None, ordered=False, unique_column_names=False )>
This reclassifies an index (or indices) as a column (or columns).
Similarly, to partially alter the index, pass the name of the column you would like to be removed to the
level
parameter, and you may also decide whether to drop the levels with thedrop
parameter.>>> example_schema = pa.DataFrameSchema({ ... "category" : pa.Column(str)}, ... index = pa.MultiIndex([ ... pa.Index(name="unique_id1", dtype=int), ... pa.Index(name="unique_id2", dtype=str) ... ] ... ) ... ) >>> print(example_schema.reset_index(level = ["unique_id1"])) <Schema DataFrameSchema( columns={ 'category': <Schema Column(name=category, type=DataType(str))> 'unique_id1': <Schema Column(name=unique_id1, type=DataType(int64))> }, checks=[], coerce=False, dtype=None, index=<Schema Index(name=unique_id2, type=DataType(str))>, strict=False name=None, ordered=False, unique_column_names=False )>
See also