pandera.schemas.DataFrameSchema.select_columns#
- DataFrameSchema.select_columns(columns)[source]#
Select subset of columns in the schema.
New in version 0.4.5
- Parameters
- Return type
- Returns
DataFrameSchema
(copy of original) with only the selected columns.- Raises
SchemaInitError
if column not in the schema.- Example
To subset a schema by column, and return a new schema:
>>> import pandera as pa >>> >>> example_schema = pa.DataFrameSchema({ ... "category" : pa.Column(str), ... "probability": pa.Column(float) ... }) >>> >>> print(example_schema.select_columns(['category'])) <Schema DataFrameSchema( columns={ 'category': <Schema Column(name=category, type=DataType(str))> }, checks=[], coerce=False, dtype=None, index=None, strict=False name=None, ordered=False, unique_column_names=False )>
Note
If an index is present in the schema, it will also be included in the new schema.