pandera.schemas.DataFrameSchema.update_columns#
- DataFrameSchema.update_columns(update_dict)[source]#
Create copy of a
DataFrameSchema
with updated column properties.- Parameters
- Return type
- Returns
a new
DataFrameSchema
with updated columns- Raises
SchemaInitError
: if column not in schema or you try to change the name.- Example
Calling
schema.update_columns
returns theDataFrameSchema
with the updated columns.>>> import pandera as pa >>> >>> example_schema = pa.DataFrameSchema({ ... "category" : pa.Column(str), ... "probability": pa.Column(float) ... }) >>> >>> print( ... example_schema.update_columns( ... {"category": {"dtype":pa.Category}} ... ) ... ) <Schema DataFrameSchema( columns={ 'category': <Schema Column(name=category, type=DataType(category))> 'probability': <Schema Column(name=probability, type=DataType(float64))> }, checks=[], coerce=False, dtype=None, index=None, strict=False name=None, ordered=False, unique_column_names=False )>