Core

Schemas

pandera.api.pandas.container.DataFrameSchema

A light-weight pandas DataFrame validator.

pandera.api.pandas.array.SeriesSchema

A pandas Series validator.

pandera.api.polars.container.DataFrameSchema

A polars LazyFrame or DataFrame validator.

pandera.api.pyspark.container.DataFrameSchema

A light-weight PySpark DataFrame validator.

pandera.api.dataframe.container.DataFrameSchema

Library-agnostic base class for DataFrameSchema definitions.

Schema Components

pandera.api.pandas.components.Column

Validate types and properties of pandas DataFrame columns.

pandera.api.pandas.components.Index

Validate types and properties of a pandas DataFrame Index.

pandera.api.pandas.components.MultiIndex

Validate types and properties of a pandas DataFrame MultiIndex.

pandera.api.polars.components.Column

Polars column schema component.

pandera.api.pyspark.components.Column

Validate types and properties of DataFrame columns.

pandera.api.dataframe.components.ComponentSchema

Base class for data container component, e.g. columns.

Checks

pandera.api.checks.Check

Check a data object for certain properties.

pandera.api.hypotheses.Hypothesis

Special type of Check that defines hypothesis tests on data.

Data Objects

pandera.api.polars.types.PolarsData

Create new instance of PolarsData(lazyframe, key)

pandera.api.pyspark.types.PysparkDataframeColumnObject

Pyspark Object which holds dataframe and column value in a named tuble

Configuration

pandera.config.PanderaConfig

Pandera config base class.

pandera.config.ValidationDepth

Whether to apply checks at schema- or data-level, or both.

pandera.config.ValidationScope

Indicates whether a check/validator operates at a schema of data level.

pandera.config.config_context

Temporarily set pandera config options to custom settings.

pandera.config.get_config_context

Gets the configuration context.